VEX Mars Rover Robot (MRR)

From EG1004 Lab Manual
Revision as of 23:44, 22 January 2020 by Dmulay (talk | contribs)
Jump to: navigation, search

Request for Proposal: Mars Rover Robot (MRR)


This project reflects real life scenarios; the robot must be able to handle minor imperfections in the course.

Note: Only the materials contained in the price list for VEX parts for robot projects may be used. To use other parts, get permission from a faculty member, and also to determine the cost of the additional parts used that are not in this price list.

Introduction and Overview

The United States National Aeronautics and Space Administration (NASA) has recently received increasing evidence of volcanic activity on the long-believed volcanically dormant planet, Mars. Radar measurements from the Mars Express Spacecraft have detected the presence of a 20-kilometer wide lake of liquid water located underneath a layer of ice in the Planum Australe region. Modern research about the discovery suggests that the only way of maintaining water in the liquid state in the conditions present on Mars is with the presence of a magma chamber located underneath the body of liquid water. In order to calculate the possibility of active volcanic activity on the Red Planet, NASA has issued an RFP (request for proposal) for a rover capable of traversing the steep slopes of Olympus Mons, the largest mountain on Mars and the second tallest volcano in the solar system. This rover would dig near the base of the volcano as well as photograph it from its peak. By studying the data obtained, NASA hopes to understand the past volcanic activity on the planet and use that data to theorize the possibility of modern volcanic activity.

The mission has two parts that must be completed. The first part is to collect the rock sample located in the upper left corner of the course and bring it back to the starting point for analysis. The second part of this mission involves climbing up to the peak(commission point) on the mountain to take a picture of the surrounding environment. To complete the two tasks, either the gyro, touch or ultrasonic sensor can be used to increase the accuracy of the rover movement. After the rock sample is collected, the sample must be analyzed by being brought back to the starting tile.

Please note that any attempt to jump with your robot or physically step onto the course will result in a point penalty due to precautions with safety.

Specifications

Course Layout

Microsoft Project

A project schedule must be created in Microsoft Project. Learn to use Microsoft Project by accessing the Microsoft Project Student Guide. This schedule must include all tasks related to the project from the start of the project to Early or Final submission. Click here to access the guide on how to transfer a file. The Microsoft Project schedule should include:

  • Minimum of 20 tasks, excluding Milestones
  • Milestones should be clearly indicated on the project plan (duration of zero days)
  • Each task must include the person responsible for completing the task (resource names)
  • Use the "Copy Picture" function to include the schedule in the presentations. Do not take a screenshot
  • Gantt chart must be displayed alongside the tasks list (fit onto one slide)
  • Gantt chart must show a progress line
  • Clearly state during the presentations whether the project is on-time, behind schedule, or ahead of schedule

For help planning the project, review the manual page Planning Project Scheduling & Costs.

Drawings

All drawings and sketches should be made using the Assembly tool in Fusion 360. It can be downloaded for free on a personal computer, or accessed from any computer during Open Lab. Using Fusion 360, create four drawings of the robot: front, top, most detailed side, and a drawing of the gear train(s). Sensors, motors, and gears must be included in each drawing. If the robot does not use any gears, make sure to explicitly state that in your presentations. Each revision of the design must be documented and all changes must be presented during Milestone presentations.

Model

You must build a scale model (1:1) of your design. The following materials will be provided:

  • VEX steel pieces and claw
  • Basic electronics prototyping kit(Reference VEX wiring guide)
  • Sensors
  • Motors

The finished MRR must not exceed a footprint of 15 in × 15 in. There is no height limitation. Additional materials can be supplied by your TA.

Cost Estimate

Once a robot design is complete, a cost estimate must be generated that specifies the cost of all the materials and labor required for the construction of the design. Tabulate this cost information clearly in an Excel spreadsheet, using the materials cost list provided. Help in calculating the cost is available by reviewing how to plan the schedule and calculate costs for a project. The costs for the parts can be found on the price list for VEX parts for robot projects. The cost estimate should include the following:

  • Labor cost breakdown with hours and rates
  • Consolidate low-cost pieces: axles, beams, bricks, bushings, connectors, gears, plates
  • Consolidate electrical components: microcontroller, breadboard, wires, battery, motor shield, etc
  • Itemize sensors and motors
  • No decimal places; this is an estimate after all. Round appropriately
  • Total cost must be shown in the bottom right corner

Extra Credit

For extra credit, your robot may climb the secondary platform, or return to the original starting position. The robot must be able to descend from the ramp. You can also receive extra credit for completing Benchmark A, Benchmark B, or Submission early, or completing your respective SLDP's 3D printing extra credit task as described in the 3D Printing Guide. Refer to the EG1003 Grading Policy for exact point values. Creativity and innovation are always rewarded. Original designs will receive extra credit.

Milestones, Benchmarks, and Deliverables

As work is done on the project, three Milestone presentations will report on the project's progress. All of the items assigned in each phase of the project are called Benchmark deliverables. These deliverables often consist of a combination of written submissions, presentations, and demonstrations. Benchmark assessments evaluate the progress of the project.

Preliminary Design Investigation

The Preliminary Design Investigation (PDI) is extremely important, as it lays the groundwork for the project. It outlines the project idea, inspiration, and goals.

The PDI must include:

  • Cover Page
  • Project Overview
  • Goals & Objectives
  • Design & Approach
  • Cost Estimate
  • Project Schedule
  • Relevant Pictures

An example PDI template can be found here. The PDI is due by Benchmark A. Do not forget to include the items listed above. Use this link to access the VEX PDI Rubric.

Milestone 1

See How To Give a Milestone Presentation for the format of a Milestone presentation.

Milestone 1 is a presentation of the PDI. It is important that it outlines the project goals and show that the project is realizable.

The Milestone 1 presentation must include:

  • Company profile
    • Company name
    • Product name
    • Company officer title(s)
    • Mission statement
  • Project objective
    • What is the project about?
    • What tasks is the company aiming to accomplish? (Benchmark A requirements)
    • Overall design approach to complete objective
  • Background information
    • Why is the project happening?
    • What does the audience need to know?
  • Technical design description
    • Preliminary conceptual drawing of robot design
      • Rendered and digital sketches are acceptable, CAD not required
    • What components will be used and why?
  • Cost estimate
    • Major components of design listed
    • Miscellaneous category listed
    • Projected labor listed
  • Microsoft Project schedule
    • Click here to access the guide on how to transfer a file
  • Teamwork agreement summary
  • Summary
    • Overall assessment on current state of project
    • Is the project on schedule? Is it on budget?
    • Next steps and future tasks


Look Ahead: What tasks are planned between now and Milestone 2?

Benchmark Assessment A

Benchmarks evaluate the progress of the project. Benchmark A is due at the end of Model Shop Session II. There are penalties for not completing this on time. Refer to the EG1004 Grading Policy for more information.

To pass Benchmark A, the design must complete all of the following:

  • Reach the rock sample(You do not have to pick it up, 50% of your robot must be on the tile)

Milestone 2

See How To Give a Milestone Presentation for the format of a Milestone presentation.

Milestone 2 Deliverables:

  • Presentation:
    • Project description
    • Design approach
    • Design changes since Milestone 1
    • Mission statement
    • CAD drawings: top, front, most detailed side, isometric, gear train
    • Mindstorms program
    • Updated cost estimate (previous and current). What changes were made?
    • Updated Microsoft Project schedule (previous and current). What changes were made?
    • Progress update: current state of the project (time, budget, etc.)

Look Ahead: What tasks are planned between now and Milestone 3?

Benchmark Assessment B

Benchmark Assessment B is due at the end of Model Shop Session III. There are penalties for not completing this on time. Refer to the EG1004 Grading Policy for more information.

To pass, complete all of the following tasks:

  • Pick up the rock sample with the claw
  • Drop off the rock sample to the start tile

Milestone 3

Using Fusion 360, prepare four views of the latest design: front, top, most detailed side, and an isometric side. This will be completed by putting together an assembly in Fusion 360 with the Assembly in Fusion 360 guide. Present the latest Arduino program and the latest MS Project plan reflecting any schedule changes. Finally, calculate a revised cost estimate.

Look ahead: What tasks are planned between now and the completion of the project?

See How To Give a Milestone Presentation for the format of a Milestone presentation. Milestone 3 Deliverables:

  • Presentation:
    • Project description
    • Design approach
    • Design changes since Milestone 2
    • Mission statement
    • CAD drawings: top, front, most detailed side, isometric, gear train
    • Mindstorms program
    • Cost estimate (previous and current). What changes were made?
    • MS Project schedule (previous and current). What changes were made?
    • Progress update: current state of the project (time, budget, etc.)

Commissioning

Projects must be commissioned before Submission. Refer to the syllabus for Submission deadlines. There are penalties for not completing this on time. Refer to the EG1004 Grading Policy for more information.

To pass, the design must complete all of the following:

  • Reach the highest point of the mountain
    • Your robot must come to a complete stop at the peak


Final Presentation

The Final Presentation will be a technical briefing, similar to the Milestones, but also serves as a sales presentation explaining why your company should be selected instead of the competition.

Your Final Presentation must include:

  • Company profile
    • Company name
    • Employee profile, role(s), and qualifications
    • Mission statement
  • Problem statement
    • Why is the project happening?
    • What does the audience need to know?
  • Project objective
    • What is the purpose of your project?
    • Who does your project help?
    • What problem does your project solve?
  • Project description
    • Specify LEED certification
      • Examples of LEED implementations in Revit
    • Revit drawings
      • All floor plan drawings
      • Dimensions
      • 1:240 scale
    • Views of exterior of building: front elevation, side elevation, isometric elevation
      • Dimensions
  • Market and product viability
    • Does your company have competitors?
    • What makes your project unique?
    • How does your design compare to competitors - cost, quality, features?
    • Is the project versatile?
    • What is the price of your project?
  • Conclusion
    • Reiterating project purpose
    • Highlight project features
    • Future goals of the company
    • Why should your company be awarded this contract?
  • Video pitch

Submission

All SLDPs must be submitted online. Please visit this page for the link to the Project Submission form and each project’s individualized login information. To submit, login to the EG1004 website using this special login information. Submitting with an NYU account or any other account will generate an error. Components may be resubmitted at any time before the deadline. Please note that submission times are based on the most recent submission.

Please note the deliverables for this project are as follows. If any of the following items are omitted, there will be a penalty. Be sure to click "Submit" at the bottom of the form and allow sufficient time for uploading. The following list includes deliverable items that are required:

  • Submission deliverables:


Late Submission

Late submission is not allowed. If a project does not Commission or receive Partial Commission by the deadline set forth in the syllabus, the project will not be allowed to submit and will receive a 0 for the project grade. To receive Partial Commissioning, two TAs must evaluate the project and determine its degree of completion according to the Commissioning requirements and the project will be given a grade accordingly. Please refer to the EG1004 Grading Policy for more information.

Frequently Asked Questions

  • Can we step onto the course as it is hard to reach the middle due to its size?
    • No. If needed, you can have a TA assist you.
  • Can we bump the course if the robot gets stuck?
    • No. You can't bump Mars, so bumping the course is not an option.
  • Can we use rubber bands on the wheels for more traction?
    • Yes! This is highly encouraged, especially when dealing with slopes.
  • All the VEX parts are really big. Is there a size constraint?
    • There is a soft size-limitation of 15in x 15in. If you slightly exceed this constraint, it is ok, but you will have difficulties due to the sizing of the course.
  • Can we jump from one hill onto the other?
    • NO! This will cause damage to both the robot and course and is also unsafe. If your robot does this, your trial will be invalidated.