Disaster Relief Robot (DRR)

From EG1003 Lab Manual
Jump to: navigation, search

RFP*: Disaster Relief Robot (DRR)

* RFP is an acronym for Request For Proposal. Internationally, RFPs are called ITTs, an acronym for Invitation To Tender governmental agencies use RFPs to solicit new business.

This project reflects real life scenarios; the robot must be able to handle minor imperfections in the course.

Note: You should only use the materials contained in the Price list for Lego parts for robot projects. If you want to use other parts, get permission from your faculty member to do so, and also to determine the cost of the parts you want to use that are not in this price list.

Introduction and Overview

In 2008, an Earthquake has damaged a nuclear power plant followed by a hurricane in the area of Bluesville County. The damage done by these disasters led to an emergency shutdown by the nuclear agency.

In order to ensure the safety of the workers in the plant, the president of the nuclear agency Billy Thai issued an RFP for the design and construction of a robot that will perform several tasks to shut down the facility. This disaster relief robot (DRR) must be both innovative and cost effective. President Thai anticipates using this robot on all of the power plants in the future if a disaster were to occur.

Specifications

Design a robot using Lego Digital Designer as your primary design tool. Your team must build a model of your design using the materials provided. A Mindstorms program that will direct the robot's movements must be created. A cost estimate of the robot's components must be provided. All revisions to the original design must be recorded and explained this includes technical design drawings, as well as cost estimates. All revisions to the Mindstorms program must be recorded and explained.

The DRR must be able to navigate autonomously around the nuclear facility. The robot must perform at least five of the six tasks and return to base in 5 minutes. The robot must fit in a start area that is 25cm long by 25cm wide. There is no height restriction and all parts of the robot must be within and not overhanging the start area.

These specifications must be met for final commissioning. Please refer to the course syllabus for all due dates.

Note: Any student who attempts to alter the course in any way, shape, or fashion (this includes lifting a tile to inspect its design) must meet with the Course Director to explain your attempt at academic dishonesty.

DRR Field

Figure 1: DRR Navigation Field
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.
Figure 2: DRR Navigation Field
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.

DRR Tasks

  1. Cut power to facility — This is a required task. The power must be cut off in order to perform the other tasks.
  2. Rescue scientists — This is a required task. The scientists have been injured and need to be sent to base for an ambulance.
  3. Secure structure of the facility — Push into place the displaced concrete plate unleveled by the quake under which liquid waste is stored.
  4. Refill backup power supply — Bring a fuel cell (ping pong ball) to the power supply container.
  5. Dispose nuclear waste — Knock the nuclear waste (green can) off of the course.
  6. Dispose empty container — Knock the used up container (black can) off of the course.

The starting point is indicated by the tile in Figure 3:

Figure 3: DRR Starting Point
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.

The power switches look like these:

Figure 4: Power Switch

The scientists may be anywhere on the tile, they look like this:

Figure 5: Scientists
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.

The displaced concrete plate is indicated in Figure 6:

Figure 6: Displaced Concrete Plate
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.

Fuel cells are located around the DRR field and must be placed inside the power supply container, they look like this:

Figure 7: Fuel Cell
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.
Figure 8: Power Supply Container
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.

There are different colored cans:

Figure 9: Nuclear Waste
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.
Figure 10: Empty Container
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.

Flammable waste containers must be avoided! This means that your robot must not touch this:

Figure 11: Flammable Waste Container
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.

However, non-toxic waste can be touched by the robot:

Figure 12: Non-toxic Waste Container
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.

Since the facility was damaged, there may be loose walls:

Figure 13: Loose Wall Power Switch
Note: The picture above contains one representation of this project description.
Actual course may be different from the one pictured above, but similar in objective.

Please Note: During commissioning, the instructors or your TA will make all judgments as to the successful completion of tasks. Protests will not be considered.

Important

A robot has successfully returned when any part of the robot crosses or overhangs the baseline. If the robot is returning an object to base, credit will be received when any part of the object crosses or overhangs the baseline. The object must be in base at the end of the trial run for credit to be received. Therefore, any retrieved objects should be removed from the robot autonomously or by a team member and placed within base right away. Objects knocked out of base accidentally by the robot and not pushed back autonomously do not receive credit!

A team member may pick up the scientists and load them onto the robot by hand. The scientists may be removed from the robot by hand once they are within base. You may NOT touch the robot while you do this.

The robot program may not be altered or switched during any part of the mission. Likewise, the robot must be fully autonomous and therefore cannot be touched by any person during testing. The robot must return to base after it has completed its tasks.

Extra Credit

Creativity and innovation are always rewarded. Original designs will receive extra credit.

Extra credit will also be awarded to students who complete all six tasks and retrieve extra fuel cells.

Microsoft Project

A time management plan using Microsoft Project (MS Project) must be created. You can learn Microsoft Project by doing the MS Project Skill Builder. This plan must include all tasks related to the project. The MS Project schedule should include the following:

  • Minimum of 20 tasks.
  • Milestones should be clearly indicated on the project plan (duration of zero days).
  • Each task must include the person responsible for completing the task (resource names).
  • Use the Copy Picture function to include the project plan in the presentations. DO NOT take a screenshot.
  • Gantt chart must be displayed alongside the tasks list (fit onto one slide).
  • Gantt chart must clearly show a progress line.
  • Clearly state during the presentation whether the project is on time, behind schedule or ahead of schedule

For help in planning the project, review the page called How to plan the schedule and calculate costs for a project.

Drawings

All drawings and sketches should be made using Lego Digital Designer.

Create four drawings of the robot: front, top, most detailed side, and a drawing of the gear trains. Sensors, motors, and gears must be included in each drawing. If the robot does not use any gears, make sure to explicitly state that during the presentations.

Each revision of the design must be documented and all changes must be presented during Milestone presentations.

Figure 14: Sample isometric image from Lego Digital Designer (without part numbers)

Model

The following materials will be provided:

  1. Mindstorms kit
  2. One NXT/EV3
  3. Sensors
  4. Motors

The finished DRR footprint must not exceed 25cm × 25cm. There is no height limitation.

Additional materials can be supplied by your TA.

Cost Estimate

Once a robot design is complete, a cost estimate must be generated that specifies the cost of all the materials and labor required for the construction of the design. Tabulate this cost information clearly in an Excel spreadsheet, using the materials cost list provided. Help in calculating the cost is available by reviewing How to plan the schedule and calculate costs for a project. The costs for the parts can be found on the Price list for Lego parts for robot projects.

Note: You should only use the materials contained in the Price list for Lego parts for robot projects. If you want to use other parts, get permission from your faculty member to do so, and also to determine the cost of the parts you want to use that are not in this price list.

Create a cost estimate on a Microsoft Excel spreadsheet. The cost estimate should include the following:

  • Labor cost breakdown with hours and rates
  • Consolidate low-cost pieces: axles, beams, bricks, bushings, connectors, gears, plates
  • Itemize high-cost pieces: controllers (NXT/EV3), sensors
  • No decimal places; this is an estimate after all. Round appropriately
  • Total cost must be shown in the bottom right corner

Milestones and Benchmarks

As you work on your project, you will be required to present periodic reports on your progress. We call these Milestones. All the items assigned in each Milestone are called deliverables. These deliverables often consist of a combination of written submissions, presentations, and demonstrations.

Milestone 1

Prepare a preliminary sketch of the design, a cost estimate, and an MS Project plan.

Look Ahead: What tasks are planned between now and Milestone 2?

See How To Give a Milestone Presentation for the format of a Milestone presentation.

Milestone 1 Deliverables:

  • Presentation:
    • Project description
    • Design approach
    • Mission statement
    • Preliminary CAD drawing of robot
    • Cost estimate
    • MS Project schedule
    • Progress update: current state of the project

Benchmark Assessment A

Benchmark assessments evaluate the progress of the project. Benchmark Assessment A is due at the end of Model Shop Session 1. There are penalties for not completing on time. Refer to the EG1003 Grading Policy for more information.

To pass, the design must complete all of the following:

  • Cut power to the facility.
  • One required task.
  • Two optional tasks.

Milestone 2

Using Lego Digital Designer, prepare four views of the latest design: front, top, most detailed side, and an isometric drawing. Also, create a drawing of the gear trains. Complete the latest Mindstorms program and the latest MS Project plan reflecting any schedule changes. Finally, calculate a revised cost estimate.

Look Ahead: What tasks are planned between now and Milestone 3?

See How To Give a Milestone Presentation for the format of a Milestone presentation.

Milestone 2 Deliverables:

  • Presentation:
    • Project description
    • Design approach
    • Design changes since Milestone 1
    • Mission statement
    • CAD drawings: top, front, most detailed side, isometric, gear train
    • Mindstorms program
    • Cost estimate (previous and current). What changes were made?
    • MS Project schedule (previous and current). What changes were made?
    • Progress update: current state of the project (time, budget, etc.)

Benchmark Assessment B

Benchmark Assessment B is due at the end of Model Shop Session 2. There are penalties for not completing on time. Refer to the EG1003 Grading Policy for more information.

To pass, the design must complete all of the following:

  • Both required tasks.
  • Three optional tasks.

Milestone 3

Using Lego Digital Designer, prepare four views of the latest design: front, top, most detailed side, and an isometric drawing. Also, provide a drawing of the gear trains. Complete the latest Mindstorms program and the latest MS Project plan reflecting any schedule changes. Finally, calculate a revised cost estimate.

Look ahead: What tasks are planned between now and the completion of the project?

See How To Give a Milestone Presentation for the format of a Milestone presentation.

Milestone 3 Deliverables:

  • Presentation:
    • Project description
    • Design approach
    • Design changes since Milestone 2
    • Mission statement
    • CAD drawings: top, front, most detailed side, isometric, gear train
    • Mindstorms program
    • Cost estimate (previous and current). What changes were made?
    • MS Project schedule (previous and current). What changes were made?
    • Progress update: current state of the project (time, budget, etc.)

Commissioning

Refer to the syllabus for the commissioning deadline. There are penalties for not completing on time. Refer to the EG1003 Grading Policy for more information.

To pass, the design must complete all of the following:

  • Both required tasks.
  • Three optional tasks.
  • Return to base.

Final Presentation

The final presentation will be a technical briefing, similar to the milestones, but also serves as a sales presentation explaining why your company should be selected instead of the competition. Please include the following:

  • Problem statement
  • Solution overview
  • Company description and qualifications
  • Drawings
  • Mindstorms program
  • Cost estimate
  • Microsoft Project schedule
  • Video demonstration
  • Why should the company be awarded this contract?

Submission

Beginning Fall 2016, students must submit online. Please visit https://eg.poly.edu/finalSLDP.php for login information and the link to the Project Submission form.

Students must be logged into the account provided at https://eg.poly.edu/finalSLDP.php. Submitting with your NYU account or any other account will generate an error.

Submissions may be edited at any time before the deadline. Please note that submission times are based on the last submission. Submissions that qualify for Early Submission will lose the Early Submission Extra Credit if the submission is edited after the Early Submission deadline.

Please note the deliverables for this project are as follows. If any of the following items are omitted, you will be penalized. Be sure to click SUBMIT at the bottom of the form.

  • Project deliverables:
    • Final presentation
    • Cover page and table of contents
    • Final Mindstorms program
    • Initial sketch
    • All the drawings of your design (initial through final)
    • Video
    • Final MS Project Schedule
    • Final cost estimate
    • Resume(s) (No fictitious resumes will be accepted.)

Early Acceptance

If you submit your project one week early, you are eligible for a bonus that will be added to your final semester-long project grade. You must submit all deliverables one week before the submission deadline (see syllabus for exact date). To submit early, all required information on the form titled Project Submission Form, found on the EG web site, must be approved, accepted, and signed by a TA. The deliverables received early are the ones you will use in your presentation. No adjustments to the deliverables submitted will be accepted.

Late Delivery

Late delivery is not allowed. If you do not commission by the deadline set forth in the syllabus, you will not receive full credit for commissioning. In order to receive partial credit, all deliverables except the commissioning statement must be submitted by the submission deadline. Please refer to the EG1003 Grading Policy for more information.

Frequently Asked Questions

Our robot knocked down the green/black can(s) and they are just rolling around on the course, that’s good enough to count for credit, right?

No. You must knock the cans completely off the course. This means knock them down to the floor, or at least on the pegboard surrounding the tiles.

The red and white cans aren’t part of any objectives so can we just move them out of the way?

No. Although the red and white cans are not part of any objectives, they have have designated spots on the course and must be there at the start of each trial run. Remember that your robot may not touch the red can at all, if it does, then your run is disqualified.