Difference between revisions of "Introduction to Revit"

From EG1004 Lab Manual
Jump to: navigation, search
(91 intermediate revisions by 8 users not shown)
Line 1: Line 1:
= Objective =
= Objective =
This exercise will introduce Autodesk Fusion 360, which is a drafting software that is used by technical professionals, and basic technical design methods will be shown using this computer-aided design (CAD) software. This software will be used in the semester-long design project (SLDP) by constructing physical prototypes with 3D printing. To practice this prototyping procedure, an NYU logo keychain will be created in Autodesk Fusion 360 and prepared in Cura to be 3D printed.
The goal of this exercise is to design a furnished apartment using Autodesk Revit.


= Overview =
= Overview =
== Computer-Aided Design ==
CAD programs, which include Autodesk's Fusion 360, AutoCAD, and Revit; Dassault Systèmes SolidWorks; and Google SketchUp, allow engineers to make dimensioned, scaled drawings. These drawings are used to manufacture equipment, build infrastructure, and allow designers to display their designs with complete specifications and detail. Orthographic views (top, bottom, side, front, back) can be used to document the technical specifications in drawings needed for production while axonometric views (isometric, dimetric, trimetric) can be used to view the final 3D representation of a product.


This exercise will teach the basics of Autodesk Fusion 360, 3D file formats, the basics of 3D printing, and the skills needed to create simple 3D files and prepare them to be 3D printed.
'''Autodesk Revit''' is a Building Information Modeling (BIM) software for architects, structural engineers, building engineers, designers, and contractors. The software allows users to design a building and its components and share information about the design. This allows for efficient planning, design, and construction of buildings and other infrastructure.  


== 3D Printing ==
To explore the Autodesk Revit platform, consider the following prompt:
3D printing allows rapid prototyping and onsite manufacturing of products. Initially done with plastic, 3D printing now uses new techniques with new materials, such as aluminum, bronze, and glass. Biomaterials are also being used, such as 3D printing ear cartilage and liver tissue. As the 3D printing industry grows, 3D printing has become a significant part of many engineering fields.


In this course, 3D printing can be used to produce prototype components, building models, SLDP course modifications, robot parts, and a company logo.
A design firm has contracted with New York City’s Department of Housing Preservation and Development to create new affordable housing units for the city's residents. The firm has decided to model the units in Autodesk Revit for approval.  


= Procedure =
Each unit in the apartment building must have the following specifications:
== 1. Setting up the File ==
# Launch AutoDesk Fusion 360, click Create Account, and fill in the information. <b>Important: Make sure to use an NYU email </b> (Figure 1).


[[Image:Lab 1B.jpg|thumb|center|600px|Figure 1: Fusion 360 New File Options]]
*A 350-400 ft<sup>2</sup> floor plan layout of the entire apartment
*A bathroom with applicable furnishings, such as a shower, toilet, and sink
*A bedroom with applicable furnishings, such as a bed, table, and desk
*A kitchen with  applicable furnishings
*The apartment should be fitted with an entrance and windows


== 2. Designing the NYU Keychain ==
== Design Consideration ==
# First, ensure that the units of your drawing are in inches. They are in the Browser on the left side of the window under "Document Settings".
# Start a 2D Sketch by clicking "Create Sketch" (Figure 2). [[Image:Lab 1B2 V2.jpg|thumb|center|600px|Figure 2: Sketch Mode]]
# Select the XZ plane (Figure 3). [[Image:Lab 1B3.jpg|thumb|center|600px|Figure 3: XZ Plane]]
# Select the 2-Point Rectangle from the "Sketch" section of the toolbar (Figure 4). [[Image:Lab 1B4 V2.jpg|thumb|center|600px|Figure 4: 2-Point Rectangle]]
# Draw a 2.6” &times; 0.7” rectangle <b>starting at the origin.</b> Click once at the origin to place one point of the rectangle and click one more time to place the second point of the rectangle. The length values can be typed in before placing the second point of the rectangle (switching which value is changed is done using the Tab key).
# Select the Center Diameter Circle from the "Sketch" section of the toolbar.
# Draw a 0.7” diameter circle centered in the middle of one of the 0.7" sides of the rectangle (the cursor should become a blue X with a triangle and snap to the midpoint of the line when you get close) (Figure 5). Similar to the 2-Point Rectangle, the diameter of the circle can by typed. [[Image:Lab 1B5.jpg|thumb|center|600px|Figure 5: Center Diameter Circle]]
# Draw another circle 0.45” in diameter in the same position. The sketch should look like Figure 6.[[Image:Lab 1B6.jpg|thumb|center|600px|Figure 6: Circles of Keychain Base]]
# Fillet (round) the corners of the base. Select the Fillet tool from the "Modify" section of the toolbar (Figure 7). [[Image:Lab 1B7.jpg|thumb|center|600px|Figure 7: Fillet Tool]]
# Select one of the two intersecting lines that form the right angles on the base. Set the fillet radius to 0.125" and repeat on the other corner. The sketch should look like Figure 8. [[Image:Lab 1B8.jpg|thumb|center|600px|Figure 8: Fillet the Corners]]
# Remove the extra lines using the trim tool. Select the trim tool from the “Modify” section of the toolbar. [[Image: Trim Tool.jpg|thumb|center|600px|Figure 8: Trim Tool]]
# Select all interior lines that divide the keychain to trim them. If error messages are indicated, remove the dimensions on the rest of the keychain by clicking on them and pressing the Delete key. The sketch should look like Figure 9. [[Image:Lab 1B9.jpg|thumb|center|600px|Figure 9: Keychain Base]]
# Exit the sketch using the "Finish Sketch" button in the top right of the window.


After creating a 2D sketch, the next step is to use that sketch to create a 3D object. The Extrude tool will be used to create a 3D block. In the future, the Revolve or other tools can be used to create more advanced geometry.
*Maximize the living space in the apartment
*Create a creative and coherent space 
*Make the apartment comfortable
*The apartment does not have to be rectangular


# Select the “Extrude” tool from the “Create” section of the toolbar (Figure 10).[[Image:Lab 1B10.jpg|thumb|center|600px|Figure 10: Extrude Tool]]
= Procedure =
#:#:# Select the profile of the object  to be extruded, which is the object that was just created.
#:#:# Change the extrusion thickness to 0.15” and press Enter.
#:#:# The model will look like Figure 11.[[Image:Lab 1B11.jpg|thumb|center|400px|Figure 11: #Deep]]
# The next step is to add the design to the key chain. For this lab, a vector graphics file will be used in the dxf format provided by NYU. In the future,  a logo can be designed using the sketch tool.
#:# Download the NYU Tandon Vector Logo (This logo was converted from the file provided on NYU's identity page).
#:#:# * [[Media:Tandon_long_white.zip|Tandon logo ACAD format]]
#:# Select “Insert DXF" under the "Insert" section of the toolbar. (Figure 12)[[Image:Lab 1B12.jpg|thumb|center|400px|Figure 12: Insert DXF]]
#:# Select the top surface of the key chain (Figure 13).[[Image:Lab 1B13.jpg|thumb|center|400px|Figure 13: Top Surface Select]]
#:# Rotate the camera again to orient the top correctly.
#:# Click on the file folder on the window that pops up and select .dxf file you downloaded.
#:# The logo should appear. (Figure 14)[[Image:Lab 1B14.jpg|thumb|center|400px|Figure 14: Beautiful Logo]]
#:#:# Make sure you change the units to inches.
#:# For this side of the key chain the "Tandon School of Engineering" portion of the logo is not needed.
#:#:# Select the bar and everything to the right using click and drag (Figure 15).[[Image:Lab 1B15.jpg|thumb|center|400px|Figure 15: RIP Tandon]]
#:#:# Delete this portion with the “Delete” key on the keyboard (Not Backspace).
#:# The logo needs to be scaled to fit the key chain. To keep the spacing of the design,  select an appropriate base point. Use the midpoint of the line on the right side of the box.
#:#:# Select the point tool under the "Sketch" section of the toolbar.
#:#:# Place a point at the center point of the right side of the box.
#:#:# Delete the bottom and the left side of the box. (Figure 16)[[Image:Lab 1B16.jpg|thumb|center|400px|Figure 16: Partly Delete Box]]
#:#:# Select the "Scale tool from the "Modify" section of the toolbar.
#:#:# Select the box and torch of the logo by clicking and dragging.
#:#:# Select the midpoint that was just placed as the base point for scaling
#:#:# Enter a scaling factor of 0.75. (Figure 17)[[Image:Lab 1B17.jpg|thumb|center|400px|Figure 17: Scale the Box]]
#:#:# Redraw the 2 sides of the box we deleted using the line tool in the “Sketch” section of the toolbar. (Figure 18)[[Image:Lab 1B18.jpg|thumb|center|400px|Figure 18: Redraw Box]]
#:# The logo will be positioned on the keychain.
#:#:# Select the entire logo and use the “Move” tool from the Modify section of the toolbar to move it off the base so there is space to draw the alignment line. [[Image:Lab 1B19.jpg|thumb|center|400px|Figure 19: Adjust the Logo]]
#:#:# Select the line tool and draw a 0.925” line from the center of the circle towards the center of the keychain.
#:#:# Select the logo using the move tool again.
#:#:# Select “Point to Point” as the move type in the window that appears. (Figure 20)[[Image:Lab 1B20.jpg|thumb|center|400px|Figure 20: Move the Logo]]
#:#:# Select the midpoint from the side of the box and the end of the line you just created.
#:#:#:# The logo should snap to it. (Figure 21)[[Image:Lab 1B21.jpg|thumb|center|400px|Figure 21: Snap the Logo]]
#:#:# Delete the guideline you created.
#:#:# Exit the sketch.
#:#:# The final sketch is shown in Figure 22.[[Image:Lab 1B22.jpg|thumb|center|400px|Figure 22: Finally Final Sketch]]
#To finish this side of the keychain, the design must be cut into the base. To do this, the extrude tool will be used.
#:#:# To cut the design, select “Extrude" from the "Create" section of the toolbar.
#:#:# Select the profile of the design to cut, in this case, the area around the torch and each of the letters. (Figure 23)[[Image:Lab 1B23.jpg|thumb|center|400px|Figure 23: Select the Outline]]
#:#:# Select "Cut" from the drop down menu next to "Operation" in the window that appeared on the right. (Figure 24)[[Image:Lab 1B24.jpg|thumb|center|400px|Figure 24: Cut the Outline]]
#:#:# Select a distance of -0.06".
#:#:# The final model is shown in Figure 25.[[Image:Lab 1B25.jpg|thumb|center|400px|Figure 25: Depth to the Outline]]
# To 3D print the design, export the file as an STL. This is the only format that can be opened by the 3d printing software.
#:# Click on triangle to the left "Document Settings" to expand the menu, and hover over "Units" to click on the "Change Active Units" button on the right to change to millimeters, but DO NOT set millimeters as the default (default units should be inches). This will convert the model into millimeters. Even though the models are built in inches, millimeters is the only unit that 3D printing software will recognize.
#:# Right click on the box above “Document Settings” and select “Save as STL”. (Figure 26)[[Image:Lab 1B26.jpg|thumb|center|400px|Figure 26: Save Your Work]]
#:# Click "OK" no need to change any of the setting.
#:# Make sure you save it to a location you'll remember like the desktop.
# The last step of the keychain is to make the white insert that will fit in the center to make it two colors.
#:# Click “File" in the toolbar at the top of the screen.
#:# Start a "New Design". (Figure 27)[[Image:Lab 1B27.jpg|thumb|center|400px|Figure 27: New Design]]
#:# Create a rectangle with dimensions 2.2”x0.65”.
#:# Extrude the rectangle 0.12”.
#:#:# This model is shown in Figure 28.[[Image:Lab 1B28.jpg|thumb|center|400px|Figure 28: Inside Box]]
#:# Save this the same way as before.


== Preparing to print ==
# Sketch a solution to the design considerations have the sketch approved by a TA '''before''' opening Revit.
# Now that the logo design is complete, the next step is to put it together in the 3D printing slicer software. We will be using Cura as the software for orienting parts on the printer and selecting the color of each object. It also generates toolpaths that the printer will follow to print the objects.  
# Open Revit 2023. <span style="color:red">It's crucial to use the most up to date version!</span> Select <b>New</b>, then select <b>Imperial Architectural Template</b> (Figure 1).[[File:Revit_2022.png|600px|thumb|center|Figure 1: Revit 2023]]
#:# Open Cura. If a menu pops up prompting for the printer, select the “Ultimaker 3”
# There are four major sections used to create and modify a design in Revit. The '''Quick Access Toolbar''' is highlighted in red, the '''Project Ribbon''' is highlighted in yellow, the '''Properties''' panel is highlighted in green, and the '''Project Browser''' panel is highlighted in blue (Figure 2). If any of the sections are accidentally removed from view, they can be reinserted by going to '''View → User Interface''' (rightmost icon) in the ribbon.[[File:Revit_Interface.png|500px|thumb|center|Figure 2: Revit Interface]]
#:#:# If a menu does not pop up, make sure the printer currently selected is “Ultimaker 3” on the top right corner
# Ensure the '''Properties''' panel is open by right-clicking the project workspace and clicking on '''Properties'''. If the Properties panel is not visible, select '''View''' in the '''Project Ribbon''', select '''User Interface''', and ensure the project browser is selected.
#:#:# Otherwise, click the arrow, select the “Add Printer” option, and add “Ultimaker 3.
# In the ribbon, go to the <b>Manage</b> tab and select '''Project Units''' (or type UN) under the '''Settings''' section (Figure 3). Click the <b>Length value</b> and select <b>Feet and fractional inches</b> with rounding to the nearest 1/32 in. Click '''OK'''. [[File:Lab 4 Figure 25.PNG|600px|thumb|center|Figure 3: Project Units]]
#:# To load your two files from above, select “Open File” on the top left corner and open the STL file containing the base of the keychain
# Ensure the '''Properties''' panel is open by right-clicking anywhere and clicking on '''Properties'''.
#:# Using the “Rotate” tool on among the options to the left, rotate the part so the torch is facing up
# Select the '''Level 1''' floor plan in the '''Project Browser''' on the left side of the window by double-clicking on '''Level 1''' under '''Floor Plans'''.
#:#:# Uncheck the “Snap Scaling” option to allow for a more precise rotation
# Create the exterior walls by going to the <b>Architecture</b> tab in the ribbon and selecting '''Wall''' (Figure 4). [[File:Lab 4 Figure 26.PNG|600px|thumb|center|Figure 4: Wall Tool]]
#:# Select “Open File” again and load the filler rectangle
# Make sure the walls are 8 in thick (Generic 8")and 10 ft high (Unconnected Height 10'). The thickness and height of the walls can be adjusted in the <b>Properties</b> panel (Figure 5). [[File:Wall properties.png|200px|thumb|center|Figure 5: Wall Properties]]
#:# Again, orient the part correctly using the “Rotate” tool
## The <b>Base Constraint</b> changes where the bottom of the wall is placed in reference to the different levels.
#:# Cura, by default, drops the objects on to the build-plate and keeps objects apart. The following steps are needed to combine the filler rectangle within the keychain:
## The <b>Base Offset</b> adjusts the height difference between the level and the base of the wall.
#:#:# Under “Preferences”, select “Configure Cura”
## The <b>Top Constraint</b> determines where the top of the wall is located. If the top constraint is unconnected, then the <b>Unconnected Height</b> can be used to determine a numerical value for the height of the wall.
#:#:# Under “Viewport behavior,” make sure to deselect both “Ensure models are kept apart” and “Automatically drop models to the build plate” if they are not already deselected
# Outline the design with the exterior walls and ensure the total area is between 350-400 ft<sup>2</sup> before moving on.
#:#:# Save your preferences
# Insert the interior walls (6 in thick and 10 ft high) within the walls for the bathroom and any other walls. The thickness of the wall can be changed in the drop-down menu in the <b>Properties</b> panel (Figure 6). [[File:Changing wall.png|270px|thumb|center|Figure 6: Changing Wall Types]]
#:#:# Return to the buildplate and make sure both objects are lying flat on the build-plate by using “Rotate” => “Lay Flat”
# Insert the floor by using the <b>Floor</b> tool in the '''Architecture''' tab of the ribbon and selecting the boundary where the floor will be placed. The boundary can be made by selecting the walls or by creating individual lines using <b>Modify | Create Floor Boundary → Draw</b> on the <b>Project</b> ribbon (Figure 7). To complete the floor, click on the green checkmark in the ribbon. [[File:Create_Floor_Boundary.png|589px|thumb|center|Figure 7: Create Floor Boundary]]
#:#:#:# If the “Lay Flat” tool does not lay the object flat, manually type in 0 mm in the “Move” tool for the Z axis
# Insert doors and windows in the apartment. Go to <b>Insert</b> → <b>Load Family</b> → <b>Doors/Windows</b> for a wide range of doors and windows (Figure 8). Doors should be 3 ft wide and 7 ft tall (No specifications for windows).[[File:Load_Family_Tool.png|600px|thumb|center|Figure 8: Load Family Tool]]
#:# Select the filler rectangle, and using the “Move” tool on the left, enter 0.15mm as the Z value to raise it vertically
# Go back to the <b>Architecture</b> tab of the ribbon and select '''Door/Window''' (Figure 9) and select the loaded door/window from the <b>Properties</b> panel. They can then be placed by clicking in the floor plan[[File:Door and window tools.png|600px|thumb|center|Figure 9: Door and Window Tools]]
#:# Select one object and choose a different extruder on the left. That piece will appear as a different color
# Once placed, the direction of the doors and windows can be changed with the paired arrows (Figure 10).[[File:Lab 4 Figure 32.PNG|600px|thumb|center|Figure 10: Door Direction Change]]
#:# Drag the filler piece and place it in the keychain base part
# When loading furniture or appliances, go to the <b>Architecture</b> tab of the ribbon and select <b>Component</b> → <b>Place a Component</b> (or type CM).
#:# Export the file as a .gcode and upload it to the website
# Furniture and appliances can be added with the <b>Load Family</b> tool. Only the furniture and appliances from the specifications must be in the floor plan. Table 1 shows the '''File Paths''' for all the files needed in this lab. In the dialog that appears, the material in the '''Override''' column should be changed.
[[Image:Cura_1.png|thumb|center|220px|Figure 29: Cura with both parts loaded]]
 
[[Image:Cura_2.png|thumb|center|220px|Figure 30: Cura with the base and the infill of the logo]]
:: {| class="wikitable"
|+ Table 1: File Paths for all Furniture
|-
! <b>Components</b>
! <b> File Paths</b>
|-
| <center>Sink</center>
| English → Plumbing → MEP → Fixtures → Sinks
|-
| <center>Toilet</center>
| English → Plumbing → MEP → Fixtures → Water Closets
|-
| <center>Shower</center>
| English → Plumbing → MEP → Fixtures → Shower
|-
| <center>Bed</center>
| English → Furniture → Beds
|-
| <center>Kitchenette</center>
| English → Specialty Equipment → Domestic
|-
| <center>Table</center>
| English → Furniture → Tables
|-
| <center>Desk</center>
| English → Furniture → Tables
|-
| <center>Door</center>
| English → Door → Residential
|-
|}
<ol start="15">
<li> Add furniture to the floor plan. The components can be rotated before being placed by pressing the spacebar. </li>
<li> Once the families are loaded, they can be placed by going to <b>Component</b> → <b>Place a Component</b> in the <b>Architecture</b> tab of the ribbon and by switching in the <b>Properties</b> tab (Figure 11). [[File:Changing_Component_Families.png|600px|thumb|center|Figure 11: Changing Component Families]] </li>
<li> To insert a ceiling or ceiling appliance, select the '''Ceiling Plans''' in the <b>Project Browser</b>. Go to '''Level 1''' in the <b>Ceiling Plans</b> (Figure 12). [[File:Ceiling_Plans.png|600px|thumb|center|Figure 12: Ceiling Plans]] </li>
<li> Use the <b>Ceiling tool</b> in the <b>Architecture</b> tab of the ribbon to create the ceiling (Figure 13). [[File:Ceiling_Tool.png|600px|thumb|center|Figure 13: Ceiling Tool]] </li>
<li> The ceiling is created with the same method as the floor, by selecting a boundary where the ceiling will be placed. The individual walls can be selected to create the boundary by creating a <b>Sketch Ceiling</b> tool, or entire areas can be selected for the boundary using the <b>Automatic Ceiling</b> (Figure 14). Complete the ceiling by clicking the green checkmark in the ribbon. [[File:Sketch_Ceiling_and_Automatic_Ceiling_Tools.png|600px|thumb|center|Figure 14: Sketch Ceiling and Automatic Ceiling Tools]] </li>
<li> Navigate back to the '''Level 1''' floor plan in the <b>Project Browser</b>. Insert the electrical appliances in the apartment using <b>Architecture</b> → <b>Component</b> on the ribbon and using the '''File Paths''' provided in Table 2. </li>
</ol>
:: {| class="wikitable"
|+ Table 2: File Paths for Electrical Components
|-
! <b>Components</b>
! <b> File Paths</b>
|-
| <center>Light Switch</center>
| US Imperial → Electrical → MEP → Electric Power → Terminals → Lighting Switches
|-
| <center>Ceiling Light</center>
| US Imperial → Lighting → MEP → Internal
|-
|}
<ol start="21">
<li> For ceiling lights, go back to the '''Level 1 Ceiling Plan''' in the '''Project Browser'''.  Select the lights that are to be placed with the '''Component''' tool in the <b>Architecture</b> tab. Once the lighting fixture is selected, select <b>Modify | Place Component</b> → <b>Placement</b> → <b>Place on Face</b> tab of the ribbon to place the lights on the ceiling (Figure 15). [[File:Place_on_Face_Tool.png|600px|thumb|center|Figure 15: Place on Face Tool]] </li>
<li> In the <b>Quick Access Toolbar</b>, select <b>Default 3D View</b> (small house icon) to view the project in 3D (Figure 16). [[File:Default_3D_View_Tool_.png|600px|thumb|center|Figure 16: Default 3D View Tool]] </li>
<li> Save the file as an Autodesk Revit File (RVT) file. Submit the RVT file on the EG1004 website by 11:59 PM the night before the next lab.
</ol>


= Assignment =
= Assignment =
 
== File Submission ==
A *.'''gcode''' file must be [https://eg.poly.edu/submit.php submitted to eg.poly.edu]. It is required for a lab report grade.
The RVT file must be submitted to the [https://eg.poly.edu/submit.php EG1004 website] by 11:59 PM the night before Lab 2. '''There is no individual lab report or team presentation for Lab 1.'''
 
{{Laboratory Experiments}}

Revision as of 02:05, 19 January 2024

Objective

The goal of this exercise is to design a furnished apartment using Autodesk Revit.

Overview

Autodesk Revit is a Building Information Modeling (BIM) software for architects, structural engineers, building engineers, designers, and contractors. The software allows users to design a building and its components and share information about the design. This allows for efficient planning, design, and construction of buildings and other infrastructure.

To explore the Autodesk Revit platform, consider the following prompt:

A design firm has contracted with New York City’s Department of Housing Preservation and Development to create new affordable housing units for the city's residents. The firm has decided to model the units in Autodesk Revit for approval.

Each unit in the apartment building must have the following specifications:

  • A 350-400 ft2 floor plan layout of the entire apartment
  • A bathroom with applicable furnishings, such as a shower, toilet, and sink
  • A bedroom with applicable furnishings, such as a bed, table, and desk
  • A kitchen with applicable furnishings
  • The apartment should be fitted with an entrance and windows

Design Consideration

  • Maximize the living space in the apartment
  • Create a creative and coherent space
  • Make the apartment comfortable
  • The apartment does not have to be rectangular

Procedure

  1. Sketch a solution to the design considerations have the sketch approved by a TA before opening Revit.
  2. Open Revit 2023. It's crucial to use the most up to date version! Select New, then select Imperial Architectural Template (Figure 1).
    Figure 1: Revit 2023
  3. There are four major sections used to create and modify a design in Revit. The Quick Access Toolbar is highlighted in red, the Project Ribbon is highlighted in yellow, the Properties panel is highlighted in green, and the Project Browser panel is highlighted in blue (Figure 2). If any of the sections are accidentally removed from view, they can be reinserted by going to View → User Interface (rightmost icon) in the ribbon.
    Figure 2: Revit Interface
  4. Ensure the Properties panel is open by right-clicking the project workspace and clicking on Properties. If the Properties panel is not visible, select View in the Project Ribbon, select User Interface, and ensure the project browser is selected.
  5. In the ribbon, go to the Manage tab and select Project Units (or type UN) under the Settings section (Figure 3). Click the Length value and select Feet and fractional inches with rounding to the nearest 1/32 in. Click OK.
    Figure 3: Project Units
  6. Ensure the Properties panel is open by right-clicking anywhere and clicking on Properties.
  7. Select the Level 1 floor plan in the Project Browser on the left side of the window by double-clicking on Level 1 under Floor Plans.
  8. Create the exterior walls by going to the Architecture tab in the ribbon and selecting Wall (Figure 4).
    Figure 4: Wall Tool
  9. Make sure the walls are 8 in thick (Generic 8")and 10 ft high (Unconnected Height 10'). The thickness and height of the walls can be adjusted in the Properties panel (Figure 5).
    Figure 5: Wall Properties
    1. The Base Constraint changes where the bottom of the wall is placed in reference to the different levels.
    2. The Base Offset adjusts the height difference between the level and the base of the wall.
    3. The Top Constraint determines where the top of the wall is located. If the top constraint is unconnected, then the Unconnected Height can be used to determine a numerical value for the height of the wall.
  10. Outline the design with the exterior walls and ensure the total area is between 350-400 ft2 before moving on.
  11. Insert the interior walls (6 in thick and 10 ft high) within the walls for the bathroom and any other walls. The thickness of the wall can be changed in the drop-down menu in the Properties panel (Figure 6).
    Figure 6: Changing Wall Types
  12. Insert the floor by using the Floor tool in the Architecture tab of the ribbon and selecting the boundary where the floor will be placed. The boundary can be made by selecting the walls or by creating individual lines using Modify | Create Floor Boundary → Draw on the Project ribbon (Figure 7). To complete the floor, click on the green checkmark in the ribbon.
    Figure 7: Create Floor Boundary
  13. Insert doors and windows in the apartment. Go to InsertLoad FamilyDoors/Windows for a wide range of doors and windows (Figure 8). Doors should be 3 ft wide and 7 ft tall (No specifications for windows).
    Figure 8: Load Family Tool
  14. Go back to the Architecture tab of the ribbon and select Door/Window (Figure 9) and select the loaded door/window from the Properties panel. They can then be placed by clicking in the floor plan
    Figure 9: Door and Window Tools
  15. Once placed, the direction of the doors and windows can be changed with the paired arrows (Figure 10).
    Figure 10: Door Direction Change
  16. When loading furniture or appliances, go to the Architecture tab of the ribbon and select ComponentPlace a Component (or type CM).
  17. Furniture and appliances can be added with the Load Family tool. Only the furniture and appliances from the specifications must be in the floor plan. Table 1 shows the File Paths for all the files needed in this lab. In the dialog that appears, the material in the Override column should be changed.
Table 1: File Paths for all Furniture
Components File Paths
Sink
English → Plumbing → MEP → Fixtures → Sinks
Toilet
English → Plumbing → MEP → Fixtures → Water Closets
Shower
English → Plumbing → MEP → Fixtures → Shower
Bed
English → Furniture → Beds
Kitchenette
English → Specialty Equipment → Domestic
Table
English → Furniture → Tables
Desk
English → Furniture → Tables
Door
English → Door → Residential
  1. Add furniture to the floor plan. The components can be rotated before being placed by pressing the spacebar.
  2. Once the families are loaded, they can be placed by going to ComponentPlace a Component in the Architecture tab of the ribbon and by switching in the Properties tab (Figure 11).
    Figure 11: Changing Component Families
  3. To insert a ceiling or ceiling appliance, select the Ceiling Plans in the Project Browser. Go to Level 1 in the Ceiling Plans (Figure 12).
    Figure 12: Ceiling Plans
  4. Use the Ceiling tool in the Architecture tab of the ribbon to create the ceiling (Figure 13).
    Figure 13: Ceiling Tool
  5. The ceiling is created with the same method as the floor, by selecting a boundary where the ceiling will be placed. The individual walls can be selected to create the boundary by creating a Sketch Ceiling tool, or entire areas can be selected for the boundary using the Automatic Ceiling (Figure 14). Complete the ceiling by clicking the green checkmark in the ribbon.
    Figure 14: Sketch Ceiling and Automatic Ceiling Tools
  6. Navigate back to the Level 1 floor plan in the Project Browser. Insert the electrical appliances in the apartment using ArchitectureComponent on the ribbon and using the File Paths provided in Table 2.
Table 2: File Paths for Electrical Components
Components File Paths
Light Switch
US Imperial → Electrical → MEP → Electric Power → Terminals → Lighting Switches
Ceiling Light
US Imperial → Lighting → MEP → Internal
  1. For ceiling lights, go back to the Level 1 Ceiling Plan in the Project Browser. Select the lights that are to be placed with the Component tool in the Architecture tab. Once the lighting fixture is selected, select Modify | Place ComponentPlacementPlace on Face tab of the ribbon to place the lights on the ceiling (Figure 15).
    Figure 15: Place on Face Tool
  2. In the Quick Access Toolbar, select Default 3D View (small house icon) to view the project in 3D (Figure 16).
    Figure 16: Default 3D View Tool
  3. Save the file as an Autodesk Revit File (RVT) file. Submit the RVT file on the EG1004 website by 11:59 PM the night before the next lab.

Assignment

File Submission

The RVT file must be submitted to the EG1004 website by 11:59 PM the night before Lab 2. There is no individual lab report or team presentation for Lab 1.