Sandbox/Virtual Product Dissection

From EG1004 Lab Manual
Jump to: navigation, search

Objectives

The objective of this lab is to evaluate the functional design of a product and apply the discovered characteristics of that product to a new design. Product dissection is a type of reverse engineering that reveals how products work and can be used as a tool for design inspiration. The goal is to design an innovative water toy for use by kids ages 4-6. The toy must be safe to use and fun.

Overview

Product dissection is often done in industry and academia to uncover opportunities for re-design. Designers take apart and analyze all components of a product to understand its structure and properties. Through understanding the product, design opportunities can be uncovered and applied to the redesign of a product. Therefore, the goal of dissection is to improve the functionality, maintainability, and reliability of a product through the examination, study, capture, and modification of other existing products.[1]

Engineering Design Process

The engineering design process is a systematic approach to the collecting, analyzing, and decision making required to create a new product or service. There are a number of published engineering design processes, but the majority of them contain the same elements. As seen in Figure 1, the steps of the engineering design process include identifying the needs and assumptions, researching the problem, brainstorming, selecting a solution, prototyping, testing, and improving.

Figure 1: Engineering Design Process.[2]

Product dissection is an important tool to inform decisions in the researching, imagining, and planning stages. In particular, the imagining step, also referred to as brainstorming or ideation, can benefit from taking the concepts of an alternative product and applying it to a new design. In this lab, it is also essential to ask about and identify the needs and constraints of the design. Future labs will cover the prototyping, testing, and redesigning steps.

Design Fixation

Design fixation is a problem that engineers and computer scientists experience when they have preconceived notions of or create an initial idea for a design and cannot conceive alternatives. Some methods to overcome design fixation include product dissection, design heuristics, SCAMPER, and brainstorming. Brainstorming is the idea generation that occurs during the conceptualization phase of the design process. Design heuristics and SCAMPER are methods that use modifying verbs to inspire alternative solutions. Product dissection uses the design characteristics of existing products and applies them in a new context.

Reverse Engineering

Reverse engineering is the reproduction of a product's specifications by the examination of the product's components and functionality. Hardware reverse engineering involves product dissection to see how a product works. For instance, if a processor manufacturer wants to see how a competitor's processor works, the company can purchase the processor, disassemble it, and then make a new processor similar to it.[3]

Software can also be reverse engineered. Reverse engineering software involves reversing a program's machine code to obtain the original source code or determine the file structures the program uses. This is done when source code is lost or is not available. For example, when a project is reactivated after being dormant for years to add new features to a product, the original design documentation may have been lost. Reverse engineering software to copy it constitutes a copyright violation and is illegal.[3]

Design Considerations

  • Design an innovative water toy for use by kids ages 4-6.
  • The toy must be safe to use and fun.
  • Incorporate the dissected product's design functional characteristics below where applicable:
    • Power supply/energy source
    • Primary motion
    • Energy flow
    • Form and outer body

Materials and Equipment

Procedure

Creativity during ideation (10 minutes)

Creativity is in important part of the engineering design and it is important to start brainstorming in a creative mindset. A piece of paper and a pencil, or note app on a phone should be used to compete the paper clip ideation activity.

Paper Clip Ideation

  • Take out a piece of paper and a pencil, or a note app on a phone
  • Write down as many ways to use a paper clip as possible (2 minutes)
  • After the timer has gone off, count up the number of ideas generated
  • Identify the greatest number of ideas generated and share
  • Share any ideas that were not mentioned, including new ideas after others have shared

First idea generation session - Individual brainstorming (10 minutes)

List all ideas for the water toy down on paper. These ideas will be used to build upon after the dissection activity. This brainstorming session is performed individually and should follow the rules of brainstorming:

  • No (self) judgement
  • Encourage wild ideas
  • Stay focused on the topic
  • Be visual
  • Go for quantity
  • Combine & improve ideas

Product dissection overview (5 minutes)

The goal of this activities is to introduce students to product dissection as an idea generation method. Product dissection is often done in industry and academia to uncover opportunities for re-design and inspire new design ideas. The purpose of this activity is to allow students to take apart and analyze all components of a product to understand its structure and properties, and thus, find ways to improve the product and/or be inspired for new design ideas. This activity can help to improve the functionality, maintainability, and reliability of a product through the examination, study, capture, and modification of existing products. It can also help serve to inspire new design ideas by drawing inspiration from products in different design domains. Therefore, it is ideal that students dissect products outside of the area they are designing. Ex. If the task is to design a new electronic toothbrush, have the student dissect any product that is not a toothbrush! Students should take part in a discussion about product dissection and watch the short video on the website under the video tab

tutorial video for SolidWorks eDrawings

Product dissection activity (20 minutes)

Each team member should choose which product to dissect. A virtual product dissection handout is provided for documentation. Deciding which product to dissect should be done in project groups, and each member should dissect something different from their teammates. The available product models can be found below by clicking on the image or link to download. After the products have been chosen, the tutorial video for SolidWorks eDrawings can be viewed to review the product dissection process.

Second idea generation session (10 minutes)

This second idea generation session is intended to help students to build on ideas from their product dissection. Students should draw out specific design ideas on idea generation sheets. These ideas may stem from the application opportunity box from the previous activity or be completely new. Remind students that they should write out all ideas that are not currently on their idea generation sheets. Students should perform this idea generation session individually and should be reminded of the rules of brainstorming

Reflection (5 minutes)

Share ideas for design with other members of the team.

Assignment

Individual Lab Report

The lab 1 report should only include content on Lab 1B Virtual Product Dissection. This means that Lab 1A Introduction to Microsoft Office and Lab 1C Introduction to 3D Printing should not appear in the lab report. For guidance on the first report, the assignment questions below have been organized into the sections in which they should appear in the report. On future lab reports, judgement must be used to determine which section of the report should address each question.

Follow the lab report guidelines laid out in the page Specifications for Writing Your Lab Reports in the Technical Communication section of this manual. The following discussion points should be addressed in the appropriate section of the lab report: Introduction

  • Define product dissection.
  • Define design fixation.
  • Explain the engineering design process.

Procedures

  • Describe the steps taken for the initial ideation of the water toy.
  • Describe the product dissection process and the steps taken in Solidworks eDrawings.

Data/Observations

  • Describe the product dissection and functional characteristics observed including:
    • Power supply/energy source
    • Primary motion
    • Energy flow
    • Form and outer body

Discussion/Conclusions

  • Describe how the product design changed from the beginning of dissection to after.
  • During product ideation did design fixation impact any parts of the product? What negative impact did this have on the design?
  • Was it useful to dissect multiple products as a group?

Remember: Lab notes must be taken. Experimental details are easily forgotten unless written down. EG1004 Lab Notes Paper can be downloaded and printed from the EG1004 Website. Use the lab notes to write the Procedure section of the lab report. At the end of each lab, a TA will scan the lab notes and upload them to the Lab Documents section of the EG1004 Website. One point of extra credit is awarded if the lab notes are attached at the end of the lab report. Keeping careful notes is an essential component of all scientific practice.

Team PowerPoint Presentation

There is NO team presentation for Lab 1.

Footnotes

  1. ^ Starkey, E., Hunter, S., & Miller, S.Learning with Product Dissection. https://www.engr.psu.edu/productdissection/. Retrieved 2019. This work is supported by the National Science Foundation through grant number 14630009.
  2. ^ TeachEngineering. The Engineering Design Process. https://www.teachengineering.org/k12engineering/designprocess. Retrieved 2019. The source of this material is the TeachEngineering digital library collection at www.TeachEngineering.org. All rights reserved.
  3. ^ a b What Is website. TechTarget Network. https://searchsoftwarequality.techtarget.com/definition/reverse-engineering Retrieved July 29th, 2003.